

TETRAHEDRON: ASYMMETRY

Tetrahedron: Asymmetry 14 (2003) 3899–3905

Highly stereoselective synthesis of furano-oxepanes: intramolecular nitrone cycloaddition (INC) reactions on sugar derived 2-substituted allylic ethers[☆]

G. V. M. Sharma, a,* Asra Begum, K. Ravinder Reddy, A. Ravi Sankar and A. C. Kunwar

^aD-211, Discovery Laboratory, Organic Chemistry Division-III, Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bNMR Group, Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 27 August 2003; accepted 4 October 2003

Abstract—The stereoselective synthesis of furano-oxepanes has been achieved from sugar ethers by an intramolecular nitrone cycloaddition (INC) reaction. The substitution at the 2-position of the allylic group aided in the exclusive formation of oxepanes. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Seven-membered oxacycles are structural fragments of a variety of bioactive natural products,1 besides their use in pharmacological applications.² The presence of these systems in complex molecules such as ciguatoxin³ and others make them challenging synthetic targets, thus resulting in the development of number of synthetic methods.⁴ Nitrone-alkene cycloaddition⁵ reactions are powerful synthetic routes for the preparation of isoxazolidines that can be converted into a variety of compounds. The intramolecular nitrone cycloaddition (INC) of O-allyl saccharides give furano-pyran, pyrano-pyran and furano-oxepane systems. Collins et al.,6 Bhattacharjya et al.6 and Shing et al.6 reported the synthesis of tetrahydro-pyrans and oxepanes using INC reactions on sugar derived 3-O-allyl ethers. Further, Shing et al. discovered the detrimental effect of steric congestion on the formation of oxepane rings. Earlier we reported⁷ substituent effects on the intramolecular 1,3-dipolar cycloaddition reaction of D-glucose-derived 3-O-prenyl and allylic ethers, which resulted new sugarderived furano-pyranes as exclusive products. In continuation of our studies on the substituent effects on INC reactions, herein, we report the synthesis of chiral

2. Results and discussion

The requisite 3-O-allyl ether—aldehydes 6 and 7 were obtained from diacetone glucose (DAG) 1 (Scheme 1). Accordingly 1 on reaction with allyl bromides C and D in the presence of NaH in DMF resulted in the formation of ethers 2 (66%) and 3 (68%), respectively. Acid hydrolysis of 2 and 3 with 60% aq. acetic acid at room temperature furnished the diols 4 and 5, respectively, which on oxidative cleavage with NaIO₄ gave 6 and 7. The thus made aldehydes 6 and 7 were independently subjected to INC reaction with CH₃NHOH·HCl in the presence of Et₃N to give 8 (75%) and 9 (50%), respectively, as exclusive products, whose structures were unambiguously assigned from NMR spectroscopic studies.

OHC
$$\stackrel{\stackrel{\leftarrow}{=}}{\stackrel{\leftarrow}{=}}$$
 OHC $\stackrel{\stackrel{\leftarrow}{=}}{\stackrel{\leftarrow}{=}}$ OHC $\stackrel{\stackrel{\leftarrow}{=}}$ OHC $\stackrel{\stackrel{\leftarrow}{=}$ OHC $\stackrel{\stackrel{\leftarrow}{=}$ OHC $\stackrel{\stackrel{\leftarrow}{=}}$ OHC $\stackrel{\stackrel{\leftarrow}{=}}$ OHC $\stackrel{\stackrel{\leftarrow}{=}$ OHC $\stackrel{\stackrel{\leftarrow}{=}}$ OHC $\stackrel{\stackrel{\leftarrow}{=}}$ OHC $\stackrel{\stackrel{\leftarrow}{=}$ OHC $\stackrel{\stackrel{\leftarrow}$

Figure 1.

* Corresponding author. E-mail: esmvee@iict.ap.nic.in, esmvee@iict.res.in

furano-oxepanes as exclusive products from the sugar derived 2-substituted allylic ethers (Fig. 1).

^{*} IICT Communication No. 030703.

Scheme 1.

NMR studies on compound 9 showed NOE between H_{7b} and H_3 indicating their diaxial disposition in the seven-membered ring, which takes a chair form. Further long-range ω coupling $J_{\rm H4-H6b}\!=\!1.0$ Hz and $J_{\rm H5-H6a}\!\approx\!0$ Hz and weak NOE between H_{7a} and H_{6a} support the proposed conformation for the oxepane ring. Other characteristic NOE's as shown in Figure 2 confirmed the envelope conformation for isopropylidine ring and NOE between N-CH₃ with H_4 confirmed that azoxy ring is pointing below the average plane of seven-membered ring. The same was further confirmed from the energy minimized⁸ structure as shown in Figure 2.

Thus, from the preceding discussion, it was evident that the substituent on the 2-position of allylic group, influences the cyclisation, resulting in oxepanes as exclusive products.

Therefore, the study on INC reactions was extended to the allyl ethers **18** and **19** derived from sorbose, wherein, in contrast to the case of **6** and **7**, the 1,2-*O*-isopropylidine group is on the top side, while the aldehyde/allyl ether groups are on the bottom side of furan ring. Accordingly, the known diacetonide **10**,9 obtained from sorbose, was subjected to alkylation with CH₃I in dioxane in presence of KOH to give **11** (Scheme 2). Hydrolysis of **11** with aq. acetic acid followed by selective protection of diol **12** with TrCl gave **13** (87%). Allylation of **13** with **C** and **D** independently

gave **14** (75%) and **15** (64%), which on hydrolysis with TFA in CH₂Cl₂ furnished **16** and **17**, respectively. Swern oxidation of **16** and **17** afforded **18** (84%) and **19** (60%), respectively, which on INC reaction under standard reaction conditions furnished oxepanes **20** (80%) and **21** (53%), respectively. Structures of **20** and **21** were unambiguously assigned from the spectral studies.

NMR studies on compound **21** (Fig. 3) showed NOE between H_{7a} and H_3 indicating their diaxial disposition in a seven-membered ring, which is in a chair conformation. Further long-range ω coupling $J_{H4-H6a} = 1.1$ Hz and $J_{H5-H6a} \approx 0$ Hz, and a weak NOE between H_{6b} and H_{7b} supported the proposed conformation for the seven-membered ring. Other characteristic NOE's between H_4 and CH_3 (a) confirmed an envelope conformation for isopropylidine ring and NOE between N- CH_3 with H_4 confirms that the azoxy ring is pointing above the average plane of the seven-membered ring, which was further supported from the minimum energy structure (Fig. 3).

3. Conclusion

In conclusion, it is well demonstrated that the substituent on the 2-position of allylic group has a prominent role in defining the regiochemical outcome, thus resulting in seven-membered oxepane ring systems as exclusive products.

Figure 2. Characteristic NOE's and minimum energy structure for 9.

Scheme 2.

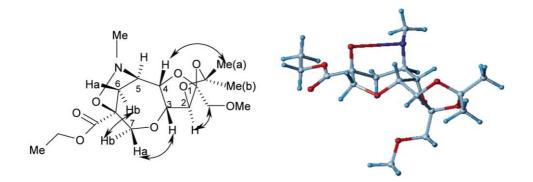


Figure 3. Characteristic NOE's and minimum energy structure for 21.

4. Experimental

NMR spectra were recorded on Varian Gemini FT-200 MHz (21°C) with 7–10 mM solutions in appropriate solvents using TMS as internal standard. Solvents were dried over standard drying agents and freshly distilled prior to use. IR spectra were taken with a Perkin–Elmer 1310 spectrometer. Mass spectra were recorded on CEC-21-11013 or Finnigan Mat 1210 double focusing mass spectrometers operating at a direct inlet system and FABMS was measured using VG AUTOSPEC mass spectrometers at 5 or 7 k resolution using perflurokerosene as an internal reference. Nomenclature mentioned in this section was adopted from ACD/Name Version 1.0β, Advanced Chemistry Development Inc., Toronto, Canada, Organic solutions were dried

over anhydrous Na₂SO₄ and concentrated below 40°C in vacuo.

4.1. 5-[2,2-Dimethyl-(4R)-1,3-dioxolan-4-yl]-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]-dioxol-6-yl 2-methylallyl ether 2

To a stirred solution of 1 (5 g, 19.23 mmol) in DMF (10 mL), sodium hydride (1.11 g, 46.15 mmol, 50% suspension) was added slowly at 0°C. After stirring at room temperature for 30 min, β-methyl allyl chloride (1.9 mL, 19.23 mmol) was added and reaction mixture was stirred for further 1 h. It was quenched with aqueous ammonium chloride solution (20 mL) and extracted with ether (3×50 mL). The ether layer was washed with water (25 mL), brine (25 mL) and dried

(Na₂SO₄). The organic layer was evaporated and residue obtained purified by column chromatography (silica gel, hexane–EtOAc, 19:1) to afford **2** (4 g, 66%) as a pale yellow syrup; $[\alpha]_D = -24.3$ (c 1.0, CHCl₃); IR (neat): 880, 1045, 1100, 1200, 1365, 2980 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 5.80 (d, 1H, J=3.7 Hz, H-1), 4.90–4.88 (2s, 2H, olefinic), 4.48 (d, 1H, J=3.7 Hz, H-2), 4.32–4.20 (m, 1H, H-4), 4.10–3.90 (m, 5H, H-5, 6a, 6b, 7a, 7b), 3.85 (d, 1H, J=1.70 Hz, H-3), 1.70 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.40 (s, 3H, CH₃), 1.32 (s, 3H, CH₃), 1.29 (s, 3H, CH₃); EIMS (m/z, %): 299 (M⁺–15, 20), 127 (10), 101 (43), 85 (11), 55 (100). Anal. calcd for C₁₆H₂₆O₆: C, 61.13; H, 8.34. Found: C, 61.07; H, 8.30.

4.2. Ethyl 2-[5-[2,2-dimethyl-(4*R*)-1,3-dioxolan-4-yl]-2,2-dimethyl-(3*aR*,5*R*,6*S*,6*aR*)-perhydrofuro[2,3-*d*][1,3]dioxol-6-yloxymethyl]acrylate 3

To a stirred solution of 1 (2.00 g, 7.69 mmol) in DMF (5 mL), sodium hydride (0.44 g, 18.46 mmol, 50% suspension) was added slowly at 0°C. After stirring at room temperature for 30 min, ethyl 2-bromo methyl acrylate (1.48 g, 7.69 mmol) was added and after 1 h, it was worked-up and purified as described for 2 to afford **3** (1.94 g, 68%) as a pale yellow syrup; $[\alpha]_D = -20.1$ (c 5.65, CHCl₃); IR (neat): 848, 1024, 1056, 1168, 1376, 1712, 2993 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 6.31–5.94 (2s, 2H, olefinic), 5.8 (d, 1H, J=3.5 Hz, H-1), 4.58 (d, 1H, J = 3.5 Hz, H-2), 4.39 - 4.20 (m, 5H, H-3, 5, 4, -OCH₂CH₃), 4.10–3.93 (m, 4H, H-6a, 6b, 7a, 7b), 1.52 (s, 3H, CH₃), 1.48 (s, 3H, CH₃), 1.40–1.25 (m, 9H, CH_3 , CH_3 , $OCH_2C\underline{H}_3$); FABMS (m/z, %): 372 (M^+ , 8), 357 (48), 281 (12), 147 (100), 127 (36), 101 (52), 73 (76). Anal. calcd for C₁₈H₂₈O₈: C, 58.05; H, 7.58. Found: C, 58.01; H, 7.53.

4.3. 1-[2,2-Dimethyl-6-(2-methylallyloxy)-(3aR,5R,6sR)-perhydrofuro[2,3-d][1,3]dioxol-5-yl]-(1R)-ethane-1,2-diol 4

A solution of compound 2 (3 g, 9.55 mmol) in 60% aq. acetic acid (15 mL) was stirred at room temperature for 12 h. It was neutralized with solid sodium bicarbonate (15 g), extracted into ethyl acetate (2×75 mL) and the organic layer was dried (Na₂SO₄). Evaporation of the solvent and purification of residue by column chromatography (silica gel, hexane-EtOAc, 3:2) afforded 4 (2.1 g, 80%) as a pale yellow syrup; $[\alpha]_D = -34.4$ (c 1.0, CHCl₃); IR (neat): 830, 1075, 1170, 2970, 3480 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 5.85 (d, 1H, J=3.65 Hz, H-1), 4.98–4.90 (2s, 2H, olefinic), 4.51 (d, 1H, J=3.65Hz, H-2), 4.12-3.90 (m, 5H, H-4, 6a, 6b, 7a, 7b), 3.82-3.65 (m, 2H, H-3, 5), 2.86 (bs, 1H, -OH), 2.61 (bs, 1H, -OH), 1.78 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.25 (s, 3H, CH₃); EIMS (m/z, %): 259 $(M^+-15, 4)$, 155 (10), 127 (50), 113 (60), 71 (57), 43 (100).

4.4. Ethyl 2-[5-[1,2-dihydroxy-(1R)-ethyl]-2,2-dimethyl-(3aR,5R,6S,6aR)-perhydrofuro[2,3-d][1,3]dioxol-6-yloxymethyl]acrylate 5

A solution of compound 3 (1.94 g, 5.20 mmol) in 60%

aq. acetic acid (10 mL) was stirred at room temperature for 12 h, it was worked-up and purified as described for 4 to afford 5 (1.49 g, 86%) as a pale yellow syrup; $[\alpha]_{\rm D}\!=\!-14.5$ (c 6.45, CHCl₃); IR (neat): 1024, 1072, 1168, 1376, 1712, 2976, 3488 cm⁻¹, ¹H NMR (200 MHz, CDCl₃): δ 6.32–5.90 (2s, 2H, olefinic), 5.85 (d, 1H, $J\!=\!3.72$ Hz, H-1), 4.50 (d, 1H, $J\!=\!3.72$ Hz, H-2), 4.30–4.18 (m, 3H, H-4, -OCH₂CH₃), 4.16–4.0 (m, 2H, H-3, 5), 4.0–3.57 (m, 4H, H-6a, 6b, 7a, 7b), 1.48 (s, 3H, CH₃), 1.39–1.22 (m, 6H, CH₃, -OCH₂CH₃); FABMS (m/z, %): 355 (M*+23, 12), 332 (M*, 4), 275 (24), 127 (46), 85 (100), 59 (76).

4.5. 6,6,12,14-Tetramethyl-(1*S*,2*R*,4*R*,8*R*,9*S*,12*R*)-3,5,7,10,13-pentaoxa-14-azatetracyclo[10.2.1.0^{2,9}.0^{4,8}]-pentadecane 8

To a stirred solution of **4** (0.90 g, 3.28 mmol) in CH_2Cl_2 (10 mL), sat. sodium bicarbonate solution (0.4 mL) was added followed by sodium periodate (1.40 g, 6.56 mmol) at 0°C and reaction mixture stirred for 5 h. After completion of the reaction (TLC analysis), solid Na_2SO_4 (0.50 g) was added, stirred for further 20 min and extracted with CH_2Cl_2 . Organic layer was dried (Na_2SO_4) and evaporated to afford 2,2-dimethyl-6-(2-methylallyloxy)-(3aR,5S,6R,6aR)-perhydrofuro[2,3-d]-[1,3]dioxole-5-carbaldehyde **6** (0.65 g, 82%) as a colourless syrup, which was used as such for the next reaction.

A mixture of 6 (0.65 g, 2.68 mmol), N-methyl hydroxylamine hydrochloride (0.22 g, 2.68 mmol) and Et₃N (0.75 mL, 5.37 mmol) in toluene (6 mL) was heated at reflux for 5 h. Toluene was removed and the residue obtained was purified by column chromatography (silica gel, hexane-EtOAc, 9:1) to afford **8** (0.545 g, 75%) as a white solid; mp 94–96°C; $[\alpha]_D = -17.25$ (c 0.75, CHCl₃); IR (KBr): 815, 1011, 1100, 1216, 1372, 1455, 2969 cm⁻¹; 1 H NMR (500 MHz, CDCl₃): δ 5.88 (d, 1H, J=3.7 Hz, H-1), 4.41 (d, 1H, J=3.7 Hz, H-2), 4.16 (ddd, 1H, J=1.0, 1.7, 3.5 Hz, H-4), 4.09 (d, 1H, J=1.7)Hz, H-3), 3.60 (dd, 1H, J=3.5, 6.5 Hz, H-5), 3.44 (q, 2H, J = 12.5 Hz, H-7a, 7b), 2.76 (s, 3H, N-CH₃), 2.72 (d, 1H, J=12.5 Hz, H-6a), 2.20 (ddd, 1H, J=1.0, 6.5, 12.5 Hz, H-6b), 1.48 (s, 3H, CH₃), 1.39 (s, 3H, CH₃), 1.32 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) 111.57, 104.26, 85.80, 84.44, 82.35, 79.18, 76.65, 66.63, 46.58, 33.49, 26.56, 26.07, 25.34; EIMS (m/z, %): 271 $(M^+, \%)$ 10), 256 (8), 98 (40), 69 (36), 57 (30), 43 (100). Anal. calcd for C₁₃H₂₁NO₅: C, 57.55; H, 7.80. Found: C, 57.49; H, 7.77.

4.6. Ethyl 6,6,14-trimethyl-(1*S*,2*R*,4*R*,8*R*,9*S*,12*R*)-3,5,7,10,13-pentaoxa-14-azatetracyclo[10.2.1.0^{2,9}.0^{4,8}]-pentadecane-12-carboxylate 9

To a stirred solution of 5 (1.48 g, 4.46 mmol) in CH₂Cl₂ (15 mL), sat. sodium bicarbonate solution (0.6 mL) was added followed by sodium periodate (1.91 g, 8.92 mmol) at 0°C and reaction mixture stirred for 5 h. It

was worked-up as described for **6** to afford ethyl 2-[5-formyl-2,2-dimethyl-(3aR,5S,6R,6aR)-perhydrofuro-[2,3-d][1,3]dioxol-6-yloxymethyl]acrylate **7** (0.99 g, 74%) as a colourless syrup, which was used as such for the next reaction.

A mixture of 7 (0.99 g, 3.3 mmol), N-methyl hydroxylamine hydrochloride (0.275 g, 3.3 mmol) and Et₃N (0.92 mL, 6.6 mmol) in toluene (10 mL) was heated at reflux for 5 h. It was worked-up and purified as described for 8 to afford 9 (0.54 g, 50%) as a white solid; mp 65–67°C; $[\alpha]_D = +71.0$ (c 0.5, CHCl₃); IR (KBr): 1015, 1092, 1246, 1384, 1738, 2910, 2992 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.89 (d, 1H, J = 3.7 Hz, H-1), 4.44 (d, 1H, J=3.7 Hz, H-2), 4.23 (q, 2H, J=7.1Hz, OCH₂CH₃), 4.17 (ddd, 1H, J=1.0, 1.8, 3.5 Hz, H-4), 4.09 (d, 1H, J=1.8 Hz, H-3), 3.68 (dd, 1H, J=3.5, 6.4 Hz, H-5), 3.94 (d, 1H, J=12.7 Hz, H-7a), 3.65 (d, 1H, J=12.7 Hz, H-7b), 2.77 (s, 3H, N-CH₃), 2.88 (d, 1H, J = 12.6 Hz, H-6a), 2.68 (ddd, 1H, J = 1.0, 6.4, 12.6 Hz, H-6b), 1.49 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 1.30 (t, 3H, J=7.1 Hz, OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) 170.87, 111.80, 104.26, 87.86, 84.39, 82.27, 79.91, 72.81, 66.52, 61.88, 45.81, 31.45, 26.60, 26.10, 13.99; FABMS (m/z, %): 330 $(M^++1, 100)$, 156 (20), 109 (15), 95 (26), 83 (27), 55 (50). Anal. calcd for C₁₅H₂₃NO₇: C, 54.70; H, 7.04. Found: C, 54.61; H,

4.7. 3a-Methoxymethyl-2,2,7,7-tetramethyl-(3a*S*,4a*S*, 8a*R*,8b*S*)-perhydro[1,3]dioxolo[4',5':4,5]furo[3,2-*d*]-[1,3]dioxine 11

To a solution of **10** (13.0 g, 50.0 mmol) in 1,4-dioxane (65 mL), solid KOH (8.41 g, 150.0 mmol) was added and heated at reflux for 2 h. The reaction mixture was cooled to 0°C and CH₃I (6.4 mL, 100.0 mmol) was added. After 5 h, 1,4-dioxane was removed on rotavapor, the reaction mixture was treated with water (50 mL) and extracted with ether (3×75 mL). Ethereal layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and evaporated. The residue obtained was purified by column chromatography (silica gel, hexane– EtOAc, 9:1) to afford 11 (11.91 g, 87%) as a pale yellow syrup; $[\alpha]_D = -5.25$ (c 6.35, CHCl₃); IR (neat): 1120, 1200, 1376, 2928, 2992 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.53 (s, 1H, H-2), 4.44 (ddd, 1H, J=2.2, 5.3 Hz, H-4), 4.31 (d, 1H, J=2.2 Hz, H-3), 3.96 (abq, 2H, J = 8.6 Hz, -CH₂OCH₃), 3.74 (m, 2H, H-5a, 5b), 3.48 (s, 3H, -OCH₃), 1.49 (s, 3H), 1.44 (s, 3H), 1.41 (s, 3H), 1.28 (s, 3H); EIMS (m/z, %): 259 (M⁺–15, 20), 210 (10), 171 (15), 101 (40), 85 (43), 45 (100).

4.8. 5-Hydroxymethyl-3a-methoxymethyl-2,2-dimethyl-(3a*S*,5*S*,6*R*,6a*S*)-perhydrofuro[2,3-*d*][1,3]dioxol-6-ol 12

A solution of compound 11 (11.9 g, 43.4 mmol) in 80% aq. acetic acid (80 mL) was stirred at room temperature for 12 h. It was neutralised with solid sodium bicarbonate (90 g), extracted into ethyl acetate (2×75 mL) and the organic layer dried (Na₂SO₄). Evaporation of the solvent and purification of residue by column chro-

matography (silica gel, hexane–EtOAc, 1:1) afforded **12** (8.13 g, 80%) as a pale yellow syrup; $[\alpha]_D = +29.9$ (c 8.85, CHCl₃); IR (neat): 1104, 1200, 1360, 2944, 3424 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.42 (s, 1H, H-2), 4.35 (dt, 1H, J=2.7, 5.2, 5.2 Hz, H-4), 4.19 (dd, 1H, J=2.7, 10.5 Hz, H-3), 3.94 (m, 2H, H-5a, 5b), 3.82 (d, 1H, J=10.5, -OH), 3.66 (abq, 2H, J=10.1 Hz, -CH₂OCH₃), 3.48 (s, 3H, -OCH₃), 1.52 (s, 3H), 1.35 (s, 3H); FABMS (m/z, %): 280 (M⁺+46, 20), 257 (M⁺+23, 40), 235 (M⁺+1, 12), 217 (38), 147 (44), 127 (54), 85 (89), 73 (100).

4.9. 3a-Methoxymethyl-2,2-dimethyl-5-trityloxymethyl-(3aS,5S,6R,6aS)-perhydrofuro[2,3-d][1,3]dioxol-6-ol 13

To a stirred solution of 12 (2.5 g, 10.6 mmol) in CH₂Cl₂ (10 mL), Et₃N (2.96 mL, 21.3 mmol) followed by trityl chloride (3.54 g, 12.72 mmol) were added at 0°C. After 6 h, it was diluted with CH₂Cl₂ (50 mL) and the organic layer was washed with water (50 mL), brine (50 mL) and dried (Na₂SO₄). Evaporation of the solvent and purification of residue by column chromatography (silica gel, hexane-EtOAc 19:1) afforded 13 (4.43 g, 87%) as a pale yellow syrup; $[\alpha]_D = +20.75$ (c 4.90, CHCl₃); IR (neat): 704, 1120, 1232, 1440, 2944, 3440 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.48 (m, 6H, Ar-H), 7.29 (m, 6H, Ar-H), 7.22 (m, 3H, Ar-H), 4.41 (s, 1H, H-2), 4.36 (dt, 1H, J=2.4, 5.6 Hz, H-4), 4.14 (dd, 1H, J=2.4, 10.5 Hz, H-3), 3.63 (abq, 2H, J = 10.1 Hz, $-CH_2OCH_3$), 3.42 (s, 3H, -OCH₃), 3.40 (m, 2H, H-5a, 5b), 1.53 (s, 3H), 1.35 (s, 3H); FABMS (m/z, %): 233 (M^+ –243, 6), 243 (100), 165 (16).

4.10. 3a-Methoxymethyl-2,2-dimethyl-6-(2-methylallyloxy)-5-trityloxymethyl-(3aS,5S,6R,6aS)-perhydrofuro[2,3-d][1,3]dioxole 14

To a stirred solution of 13 (2 g, 4.2 mmol) in DMF (5 mL), sodium hydride (0.24 g, 10.00 mmol, 50% suspension) was added slowly at 0°C. After stirring at room temperature for 30 min, β-methyl allyl chloride (0.41 g, 4.2 mmol) was added and after 1 h, it was worked-up as described for 2 to afford 14 (1.67 g, 75%) as a white solid; mp 128–130°C; $[\alpha]_D = +29.6$ (c 6.30, CHCl₃); IR (KBr): 704, 1088, 1200, 1376, 1456, 2848, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.49 (m, 6H, Ar-H), 7.25 (m, 6H, Ar-H), 7.18 (m, 3H, Ar-H), 4.95–4.75 (m, 2H, olefinic), 4.42 (s, 1H, H-2), 4.39 (dt, 1H, J=3.4, 4.9, 4.9 Hz, H-4), 3.90 (td, 1H, J=12.7, 1.3 Hz, H-7a), 3.85 (d, 1H, J=3.4 Hz, H-3), 3.75 (td, 1H, J=1.3, 12.5, Hz, H-7b), 3.50 (dd, 1H, J=5.4, 9.1 Hz, H-5a), 3.42 (abq, 2H, J = 12.4 Hz, $-CH_2OCH_3$), 3.40 (s, 3H, $-OCH_3$), 3.2 (dd, 1H, J=9.1, 7.7 Hz, H-5b), 1.60 (s, 3H, CH₃), 1.57 (s, 3H), 1.37 (s, 3H); FABMS (m/z, %): 287 (M⁺–243, 4), 243 (10), 109 (45), 95 (62), 55 (100).

4.11. Ethyl 2-[3a-methoxymethyl-2,2-dimethyl-5-trityloxymethyl-(3aS,5S,6R,6aS)-perhydrofuro[2,3-d][1,3]-dioxol-6-yloxymethyl|acrylate 15

To a stirred solution of **13** (1.6 g, 3.35 mmol) in DMF (5 mL), sodium hydride (0.19 g, 8.05 mmol, 50% sus-

pension) was added slowly at 0°C. After stirring at room temperature for 30 min, ethyl 2-bromo methyl acrylate (0.65 g, 3.35 mmol) was added. After 1 h, it was worked-up and purified as described for 2 to afford **15** (1.265 g, 64%) as a pale yellow syrup; $[\alpha]_D = +43.0$ (c 3.45, CHCl₃); IR (neat): 720, 1088, 1376, 1712, 2928 cm⁻¹; ${}^{1}H$ NMR (500 MHz, CDCl₃): δ 7.42 (m, 6H, Ar-H), 7.27 (m, 6H, Ar-H), 7.21 (m, 3H, Ar-H), 6.16 (dt, 1H, J=2.9, 1.3, 1.3 Hz, olefinic), 5.58 (dt, 1H, J=2.9, 1.3, 1.3 Hz, olefinic), 4.52 (s, 1H, H-2), 4.47 (ddd, 1H, J=3.1, 5.5, 7.8 Hz, H-4), 4.31(td, 1H, J=14.0, 1.3, 1.3 Hz, H-7a), 4.17 (q, 2H, J=7.2 Hz, $-OCH_2CH_3$), 4.12 (td, 1H, J=14.0, 1.3, 1.3 Hz, H-7b), 4.05 (d, 1H, J=3.1 Hz, H-3), 3.49 (abq, 2H, J=11.0Hz, $-CH_2OCH_3$), 3.45 (dd, 1H, J=5.5, 9.2 Hz H-5a), 3.38 (s, 3H, $-OCH_3$), 3.28 (dd, 1H, J=9.2, 7.8 Hz, H-5b), 1.55 (s, 3H), 1.40 (s, 3H), 1.26 (t, 3H, J=7.2 Hz, OCH_2CH_3); FABMS (m/z, %): 345 (M^+ –243, 10), 380 (20), 243 (100), 165 (24).

4.12. 3a-Methoxymethyl-2,2-dimethyl-6-(2-methylallyl-oxy)-(3aS,5S,6R,6aS)-perhydrofuro[2,3-d][1,3]dioxol-5-ylmethanol 16

To a stirred solution of 14 (1.67 g, 3.1 mmol) in CH₂Cl₂ (15 mL), trifluoroacetic acid (1.64 mL) was added at 0°C and stirred at room temperature for 1 h. It was quenched with aq. sodium bicarbonate solution (25) mL) and extracted with CH₂Cl₂ (3×30 mL). Organic layer was washed with water (25 mL), brine (25 mL) and dried (Na₂SO₄). Evaporation of solvent and purification of residue by column chromatography (silica gel, hexane-EtOAc, 3:2) afforded 16 (0.6 g, 66%) as a pale yellow syrup; $[\alpha]_D = +32.4$ (c 5.50, CHCl₃); IR (neat): 880, 1040, 1120, 1200, 1360, 1456, 2920, 3456 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.0–4.88 (m, 2H, olefinic), 4.54 (s, 1H, H-2), 4.40 (dt, 1H, J=3.3, 4.8, 4.8 Hz, H-4), 4.04 (td, 1H, J=12.5, 1.1 Hz, H-7a), 3.99 (d, 1H, J=3.3 Hz, H-3), 3.94 (td, 1H, J=4.8, 12.1 Hz, H-5a), 3.88 (td, 1H, J=12.5, 1.1 Hz, H-7b), 3.86 (dd, 1H, J=4.8, 12.1 Hz, H-5b), 3.61 (abq, 2H, J=12.4 Hz, -CH₂OCH₃), 3.44 (s, 3H, -OCH₃), 1.73 (s, 3H, CH₃), 1.51 (s, 3H), 1.41 (s, 3H); FABMS (m/z, %): 289 $(M^++1, 20), 231 (12), 109 (32), 95 (45), 69 (62), 55 (100).$ Anal. calcd for C₁₄H₂₄O₆: C, 58.32; H, 8.39. Found: C, 58.25; H, 8.33.

4.13. Ethyl 2-[5-hydroxymethyl-3a-methoxymethyl-2,2-dimethyl-(3aS,5S,6R,6aS)-perhydrofuro[2,3-d][1,3]dioxol-6-yloxymethyl]acrylate 17

To a stirred solution of **15** (1.26 g, 2.13 mmol) in CH_2Cl_2 (10 mL), trifluoroacetic acid (1.2 mL) was added at 0°C, stirred at room temperature for 1 h and worked-up and purified as described for **16** to afford **17** (0.52 g, 70%) as a pale yellow syrup; $[\alpha]_D = +14.8$ (c 5.30, $CHCl_3$); IR (neat): 1120, 1200, 1376, 1712, 2944, 3472 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$): δ 6.32 (dt, 1H, J=2.8, 1.2 Hz, olefinic), 5.82 (dt, 1H, J=2.8, 1.2 Hz, olefinic), 4.43 (ddd, 1H, J=3.3,

5.5, 7.7 Hz, H-4), 4.35 (td, 1H, J=12.9, 1.2, 1.2 Hz, H-7a), 4.24 (q, 2H, J=7.1 Hz, -OCH₂CH₃), 4.18 (td, 1H, J=12.9, 1.1, 1.1 Hz, H-7b), 4.05 (d, 1H, J=3.3 Hz, H-3), 3.84 (m, 2H, H-5a, 5b), 3.57 (abq, 2H, J=10.5 Hz, -CH₂OCH₃), 3.43 (s, 3H, -OCH₃), 1.50 (s, 3H, -CH₃), 1.41 (s, 3H), 1.23 (t, 3H, J=7.1 Hz, OCH₂CH₃); FABMS (m/z, %): 346 (M⁺, 4), 355 (8), 281 (29), 242 (40), 147 (60), 73 (100), 55 (60). Anal. calcd for C₁₆H₂₆O₈: C, 55.48; H, 7.57. Found: C, 55.40; H, 7.52.

4.14. 4-Methoxymethyl-6,6,12,14-tetramethyl-(1*R*,2*S*,4*S*, 8*S*,9*R*,12*S*)-3,5,7,10,13-pentaoxa-14-azatetracyclo-[10.2.1.0^{2,9}.0^{4,8}]pentadecane 20

To a stirred solution of oxalyl chloride (0.20 mL, 2.28 mmol) in dry CH₂Cl₂ (5 mL), dry DMSO (0.32 mL, 4.57 mmol) was added at -78°C. After stirring at the same temperature for 20 min, a solution of **16** (0.60 g, 2.08 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise and the reaction mixture stirred for further 3 h. It was quenched with Et₃N (1.73 mL, 12.48 mmol) and stirred till reaction mixture comes to room temperature. It was diluted with CH₂Cl₂ (25 mL) and organic layer was washed with water (25 mL), brine (25 mL), dried (Na₂SO₄) and evaporated to afford 3a-methoxymethyl-2,2-dimethyl-6-(2-methylallyloxy)-(3aS,5R,6R,6aS)-perhydrofuro[2,3-d][1,3]dioxole-5-carbaldehyde **18** (0.50 g, 84%) as a light brown syrup, which was used as such for the next reaction.

A mixture of **18** (0.50 g, 1.75 mmol), *N*-methyl hydroxylamine hydrochloride (0.146 g, 1.75 mmol) and Et₃N (0.49 mL, 3.50 mmol) in toluene (5 mL) was heated at reflux for 5 h and worked-up as described for 8 to afford **20** (0.44 g, 80%) as a white solid; mp 113–115°C; $[\alpha]_D = +21.3$ (c 0.5, CHCl₃); IR (KBr): 1030, 1107, 1369, 2912, 2995 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.34 (s, 1H, H-2), 4.26 (ddd, 1H, J=1.1, 1.8, 3.1 Hz, H-4), 4.09 (d, 1H, J=1.8 Hz, H-3), 3.64 (d, 1H, J=10.8 Hz, H-7a), 3.57 (dd, 1H, J=3.1, 6.4 Hz, H-5), 3.57 (d, 1H, J = 10.8 Hz, H-7b), 3.45 (s, 2H, C $\underline{\text{H}}_2$ OCH₃), 3.45 (s, 3H, $-OCH_3$), 2.75 (s, 3H, N-CH₃), 2.67 (d, 1H, J=12.7Hz, H-6a), 2.19 (ddd, 1H, J=1.1, 6.4, 12.7 Hz, H-6b), 1.50 (s, 3H, CH₃), 1.39 (s, 3H, CH₃), 1.38 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) 112.78, 112.22, 85.83, 84.42, 82.32, 79.81, 77.07, 72.75, 66.80, 59.72, 46.59, 33.58, 27.36, 26.26, 25.35; FABMS (m/z, %): 316 $(M^++$ 1, 96), 258 (22), 185 (40), 133 (22), 93 (84), 55 (100). Anal. calcd for $C_{15}H_{25}NO_6$: C, 57.13; H, 7.99. Found: C, 58.06; H, 7.93.

4.15. Ethyl-4-methoxymethyl-6,6,14-trimethyl-(1*R*,2*S*,4*S*, 8*S*,9*R*,12*S*)-3,5,7,10,13-pentaoxa-14-azatetracyclo-[10.2.1.0^{2,9}.0^{4,8}|pentadecane-12-carboxylate 21

To a stirred solution of oxalyl chloride (0.12 mL, 1.43 mmol) in dry CH_2Cl_2 (5 mL), dry DMSO (0.2 mL, 2.86 mmol) was added at $-78^{\circ}C$. After 20 min, a solution of 17 (0.45 g, 1.30 mmol) in dry CH_2Cl_2 (5 mL) was added dropwise. After 3 h, it was quenched with Et_3N (1.08 mL, 7.8 mmol) and worked-up as described for 18 to

afford ethyl 2-[5-formyl-3a-methoxymethyl-2,2-dimethyl - (3aS,5R,6R,6aS) - perhydrofuro[2,3 - d][1,3]-dioxol-6-yloxymethyl]acrylate **19** (0.27 g, 60%) as a light brown syrup, which was used as such for the next reaction.

A mixture of 19 (0.27 g, 0.78 mmol), N-methyl hydroxylamine hydrochloride (0.066 g, 0.78 mmol) and Et₃N (0.22 mL, 1.57 mmol) in toluene (5 mL) was heated at reflux for 5 h. It was worked-up as described for 8 to afford **21** (0.155 g, 53%) as a white solid; mp 66–68°C; $[\alpha]_D = -26.3$ (c 0.5, CHCl₃); IR (KBr): 1050, 1200, 1250, 1500, 1720, 2905, 2998 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.36 (s, 1H, H-2), 4.27 (ddd, 1H, J=1.1, 2.1, 3.1 Hz, H-4), 4.22 (q, 2H, J=7.2 Hz, OCH₂CH₃), 4.09 (d, 1H, J=2.1 Hz, H-3), 3.95 (d, 1H, J=12.8 Hz, H-7a), 3.64 (dd, 1H, J=3.1, 6.5 Hz, H-5), 3.62 (d, 1H, J=12.8 Hz, H-7b), 3.61 (q, 2H, J=10.7 Hz, CH_2OCH_3), 3.45 (s, 3H, -OCH₃), 2.76 (s, 3H, N-CH₃), 2.83 (d, 1H, J = 12.6 Hz, H-6a), 2.66 (ddd, 1H, J = 1.1, 6.5, 12.6 Hz, H-6b), 1.50 (s, 3H, CH₃), 1.38 (s, 3H, CH₃), 1.29 (t, 3H, J=7.2 Hz, OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) 170.90, 112.80, 112.41, 87.86, 84.33, 82.58, 79.48, 72.83, 72.67, 66.63, 61.86, 59.76, 45.79, 31.53, 27.36, 26.25, 13.99; FABMS (m/z, %): 374 $(M^++$ 1, 100), 316 (62), 270 (10), 188 (20), 129 (18), 113 (28). Anal. calcd for C₁₇H₂₇NO₈: C, 54.68; H, 7.29. Found: C, 54.62; H, 7.24.

Acknowledgements

The authors, K.R.R. and A.R.S. would like to thank the CSIR, New Delhi, for financial support.

References

(a) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897–1909; (b) Macias, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261–8266; (c) Aida, M.; Shinomiya, K.; Matsuzawa, Y.; Nomura, T. Heterocycles 1994, 39, 847–858; (d) Cimino, G.; Madaio, A.; Trivellone, E.; Uriz, M. J. Nat. Prod. 1994, 57, 784–790; (e) Govindachari, T. R.; Krishna Kumari, G. N.; Suresh, G. Phytochemistry 1995, 39, 167–170; (f) Faulkner, D. J. Nat. Prod. Rep. 1996, 13, 75–125; (g) Murata, K.; Satake, M.; Naoki, H. F.; Kaspar, H. F.; Yasumoto, T. Tetrahedron 1998, 54, 735–742.

- (a) Crawley, G. C.; Dowell, R. I.; Edwards, P.; Foster, S. J.; McMillan, R. M.; Walker, E. R. H.; Waterson, D.; Bird, T. G. C.; Bruneau, P.; Girodean, J. M. J. Med. Chem. 1992, 35, 2600–2609; (b) Waller, D. P.; Martin, A.; Oshima, Y.; Fong, H. H. S. Contraception 1987, 35, 147–153; (c) Kanojia, R. M.; Chin, E.; Smith, C.; Chen, R.; Rowand, E.; Levine, S. D.; Wachter, M. P.; Adams, R. E.; Hahn, D. J. Med. Chem. 1985, 28, 796–803; (d) Mrozik, H.; Sinclair, P. J. Eur. Pat. Appl. 90-305852; (e) Kane, V. V. US Pat. 80-130660; (f) Hajos, Z. G.; Wachter, M. P. US Pat. 4276216 810630; (g) Chen, R. H. K. US Pat. 78-920432 780629; (h) Kanojia, R. M.; Wachter, M. P.; Chen, R. H. K. US Pat. 81-224416 810112.
- (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967, 155, 1267–1268; (b) Murata, M.; Legrand, A. M.; Yasumoto, T. Tetrahedron Lett. 1989, 30, 3793– 3796
- (a) Alvarez, E.; Candenas, M.-L.; Perez, R.; Ravelo, J. L.; Martin, J. D. Chem. Rev. 1995, 95, 1953–1980; (b) Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1996, 35, 589–607; (c) Mori, Y. Chem. Eur. J. 1997, 3, 849–852; (d) Hoberg, J. O. Tetrahedron 1998, 54, 12631–12670.
- (a) Gothelf, K. V.; Jorgensen, K. A. Chem. Rev. 1998, 98, 863–909;
 (b) Torssell. K. B. G. In Organic Synthesis. Nitrile Oxides. Nitrones and Nitronates. VCH: NewYork, 1988;
 (c) Osborn, H. M. I.; Gemmell, N.; Harwood, L. H. J. Chem. Soc., Perkin Trans. 1 2002, 2419–2438.
- (a) Collins, P. M.; Ashwood, M. S.; Eder, H. Tetrahedron Lett. 1990, 31, 2055–2058; (b) Bhattacharjya, A.; Chattopadhyay, P.; McPhail, A. T.; McPhail, D. R. J. Chem. Soc., Chem. Commun. 1990, 1508–1509; (c) Shing, T. K. M.; Fung, W.-C.; Wong, C.-H. J. Chem. Soc., Chem. Commun. 1994, 449–450; (d) Bhattacharjya, A.; Mukhopadhyay, R. Tetrahedron Lett. 2000, 41, 10135–10139.
- (a) Sharma, G. V. M.; Srinivas Reddy, I.; Goverdhan Reddy, V.; Rama Rao, A. V. *Tetrahedron: Asymmetry* 1999, 10, 229–235; (b) Sharma, G. V. M.; Reddy, K. R.; Ravi Sankar, A.; Kunwar, A. C. *Tetrahedron Lett.* 2001, 42, 8893–8896.
- 8. Energy minimizations were carried out using Sybyl 6.8 program on a silicon graphics O2 workstation. The Tripos force field with default parameters was used throughout the simulations. Minimizations were done first with steepest decent, followed by conjugate gradient methods for a maximum of 2000 iterations each or RMS deviation of 0.005 kcal/mol, whichever was earlier. The thus derived structure was then subjected to geometrical normalization using MOPAC. Finally the derived new geometry was minimized again using the above minimization protocal.
- Maksimov, V. I.; Nikonova, V. V.; Lazarev, A. F.; Zvereva, L. A. J. Gen. Chem. (USSR) 1939, 9, 936–943.